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Characterization of Gevrey Regularity
by a Class of FBI Transforms

S. Berhanu and Abraham Hailu

1 Introduction

The FBI transform is a nonlinear Fourier transform introduced by J. Bros and
D. Iagolintzer in order to characterize the local and microlocal analyticity of
functions (or distributions) in terms of appropriate decays in the spirit of the Paley-
Wiener theorem. This paper characterizes local and microlocal Gevrey regularity
in terms of appropriate decays of a more general class of FBI transforms that were
introduced in [6]. The classical and more commonly used FBI transform has the
form

ngu(x’ g) — / ei?(x—x’)_\gux—x"Zu(x/) dx/, x?é c R" (1)

m

where u is a continuous function of compact support in R” or a distribution of
compact support in which case the integral is understood in the duality sense. This
transform characterizes microlocal analyticity (see [14]) and microlocal smoothness
(see [8]) and has been used in numerous works to study the regularity of solutions
of linear and nonlinear partial differential equations.

Among the many works where the transform (1.1) has been used, we mention
[2-5,7-12] and [14]. In [14] (see also [8] and [15]) more general FBI transforms
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than (1.1) were considered where the phase function behaved much like the
quadratic phase i§ - (x — x') — |£||x — x’|? in that the real part of the Hessian was
required to be negative definite.

In the work [6] the authors introduced a more general class of FBI transforms
where the real part of the Hessian of the phase function may degenerate at the point
of interest. It was shown that these more general transforms characterize local and
microlocal smoothness and real analyticity. Simple examples of the transforms that
were introduced include, foreach k = 2, 3, ...,

fku(x, S) — / eig(x—x/)_‘g\|x—x"2ku(x/) dx’, x’g e R™.

m

Observe that for k > 1, these transforms have a degenerate Hessian at the origin. In
[6] Z>u was used to establish the microlocal hypoellipticity of certain systems of
complex vector fields in a situation where the standard transform .#u didn’t seem
to help.

In section 2 we discuss the local and microlocal characterization of Gevrey
functions as boundary values of almost analytic functions F with the property that
dF decays exponentially. In section 3 we present a characterization of the Gevrey
wave front set in terms of appropriate decays of a class of FBI transforms introduced
in [6]. This result generalizes a result of M. Christ ([7]) who proved a similar
characterization using the classical transform given by (1.1).

The authors are grateful to the referee for some helpful comments.

2 Gevrey Functions and Some Preliminaries

Definition 1 Let s > 1. Let f(x) € C*°(£2), £2 C R™ open. The function f is a
Gevrey function of order s on 2 if for any K CC §2 there is a constant Cx > 0 such
that

10%f(x)] < C™ (@), Ve K, Va.
We denote the class of Gevrey functions of order s on £2 by G°(£2). If s = 1, then

G'(R2) = C?(R) is the space of real analytic functions on £2.

Definition 2 Let £2 C R” be open, and u € 2'(2), s > 1. Let xy € §2. We say
(x0,£%) ¢ WF,(u) (Gevrey wave front set of ) if there is ¢ € G* N CP (Gevrey
function of compact support), ¢ = 1 near X, a conic neighborhood I" of £° and
constants ¢y, ¢ > 0 such that

Gu(®)| < crexp(—calé)?) . Ve T
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Equivalently,

o~ —N

lgu(€)| < AT (NDIE| S, VEe MYN =1,2,....

Here gu(€) denotes the Fourier transform of ¢u.

It is well known that u € G*(£2) if and only if WF(1) = @ over §2 (see [13]).

Theorem 1 Let 2 C R™ be open. f € G*(82) if and only if for each K CC §2

relatively compact and open, there is F(x,y) € C' (K x R™) such that

1. F(x,0) =f(x) on K and
2.

oF —
_(x,y)| <crexp Clz Vi=1,2,....m
8Zj | |

y s—1

on K x Bg for some constants cy,c3,8 > 0 where Bs'= {y € R™ : |y| < 8} and

zj = x; + 1yj.

In the proof of Theorem (1) we will use the following remark.

Remark I 1Tt is easy to see that condition (2) in Theorem (1) holds if and only if for

some ¢ > 0

<MY YN =0,1,2, ...

oF
% (x,y)

@)

Proof Suppose f(x) € G*(£2) and K CC £2 relatively compact and open. Let

{@101} e be defined by

1

Clap-1 =1

o] =
for some C to be chosen later. Set

flel
Fa =Y oz ()

a
o e

where y € Ci°(R), y = 1 on [—;, ;], xx)=0when x| >1,0<y <1.
We will first show that F is C!. Since f(x) € G*, there is Cx > 0 such that

09 (0)| < CE (@), Vx ek, Va.
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For x € K, since y is supported in [—1, 1],

ilalaaf(x) " Iyl - C\a\+1(a,)s—1 1
ot S YL aw )| = K 7 Clo|glels=D
C ee]+1
< c( CK) 5)
For each «, let g, (x,y) = a, 1 000y x (Jf‘l)
lee]+2
K NS
dygale ) = 7 (@ +e)h Clel g el6=1)
e]+2
Cy Jal s s 1
S ' S
= w27 gt
Jer|+2
<c (zcg) ©)

where we used the fact that (o 4 ¢;)! < 2lelg!. Next we consider

il )
o “f<a°'f><x)x('y'l) ey ()

A ) )yl

:AQ(X,)’) +Ba(x7y)‘ )

anga(xv y)

Here if o; = 0, we set A, (x,y) = 0. We have:

C |e|+1
sl = () el

and

oe|4+1
, [ C
|B,(x,y)| < C*C ( g) la™, " =supy.

It follows that

, Cx Jor|+1 .
gl =+ (F)

We now choose C = 2°C. From the preceding estimates, we conclude that F is C'.
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We next compute gg_(x,y) foreachj=1,...,m. Fixj=1,...,m. Then
j

OF 19 Iyl
D= (Z e x( |a|))

; jlel
l O{/ a ej (qa |y|
+, > o (0N ) x (aa)

{a:ajzl}
ol | :
i Y v
" wanwy ()
Z Ala). ) ajal[y]
where ¢; = (0,...,0, 1 ,0,...,) eNf.
jth place
Let 8 = a — ;. Then |B| = || — |¢j| = 0'in the second sum and so

oF RS Lo ay (P
az‘,-(x’Y) T2 Za: a! <a)‘ f) pr X(awl)

o, (ﬁ(ﬂfl). ﬁ(3ﬁ+e’f)(X)x< V! )
¢j

2 510 b+

) Z y ENL (le') a\y\jlyl

=, X e ()

Aol

|+l

+ ;Z /31!""3 +1+1yﬁ(af+ejf)(X)x< M )

n Z RCITS (f') %

aje) 1yl

=20 ()0 (1) =1 (o,0)
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ol

R— , Iyl) Vi
o aa
t Xa: al? (@01 (aa ajq|lyl

= X1(x,y) + 22(x,y) ®)

We observe that

Si(xy) # 0= ; < aLylﬂ and !i' <1
and so
a|a2|+1 <yl < -
Then by the definition of the a|,) we get
S A0 el ©)
2C| (x| 4 1)1 Clajs—!

Each term in X (x, y), x € K satisfies

jlo|
! otej o [yl Iyl
L (87r) @ (x (a )‘X(a
|| la|+1
21| ot :
= Zl' i (@ + ey
2 1 lor] SN Y
= o (c|a|3—l) G " @+ ) by ©)
2 1 ] oo 1 8
! (C| | 1) Ce "7 (@) (ej) 21D using (B 4 6)! < Bla12lfIFl
ol al™
25Ck |41 ol !
— ;o
s o] +1 | s—1
<c, 2°Ck |or|!
B C ||l
s—1
25C e[ 41 )
= Ck ( CK) \/‘aj‘r_'?| , (by Stirling’s formula) (10)
e

From inequality (9) we have

1

1 1 1 1
1 1 §|Ol|—‘f_1:> 1 1 —|y|s—1 Slal
(2C)s=1 Jy|s= [y[s=1 \ (2C) s
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Thus if |y| is small, say |y|x—11 < ', and X\ (x,y) # 0, then we get
2(20)s—1

1 1 1 1 1 |
1 1 1 = 1 Lo bl ) = el
lyls=1 \(2C)s=1  2(2C)s1 ly[s=1 \(2€)s=

Hence,
A 1
. = loe], Ay = 1
|y|xfl 2(2C)571
Thus,
N4+1
1 s—1
< N=0,1,2,....

i 9
|06|N+1 A§V+l

From (10) and (11) we get

P . vy [l

N (ax f) )y (X (aa) X (a|a|+1))'
, (2Ce\ " (/2m)a N\

< Cg ( CK) (\ém—l )

C

s [ 2°Ck ol +1 S=Lo _laj(s—1) 1 ; s—1 s—1
=G Vie| JeeTh C = G Var > 0

2Ce\ 1 N+ D! 1
gcg( K) Vo WD N=012,...

c (s = ¥+ o 4D

C}é+1 N+l 25Ck o +1 s—1 N+l
< N+ 1)! smh
(oxhy) wem(PE) T Vi

Thus using (12), we get

e . Iyl Iyl
o (87r) ey (x (alal)—x(alal+l))‘

c’+1 N+l 25Ck lerl+-1 s—1 N+1
S((slinA) (NH)!( c ) b=

s—1 o] +1
25Cxe 2 N+1 cy+1
< D11V+1(N 4 1)' ( c ) |y| s—1 le = (Sf 1)A

Y

12)

83

84

85

86

87



Author's Proof

S. Berhanu and A. Hailu
N+1
< DYF'(N + D!yl

2Cge’2
we may assume C was chosen so that <1

c =
Thus 88

jlol _

S e (o M) =P )) = oy v v =02

o! a‘a‘ a|a|+1

89
From equation (9), when X (x,y) # 0, we have 90
1
lef <
C.r—l |y| s—1

Therefore, using this and inequality (13), we have 91

Syl Y DY D N =012,

1

lal< 1 1
Cs—1 |y[s—1
N+1
= DYV + 1)y 5= >
lo|< 'y
Cs—1 |y|s—1
1
<Dy WEDE L
Cs—l |y|s—l
< DEHKlylY . k=0.1,2,... D independent of k. (14)

Consider X, (x,y) : Since y = 0 outside (—1,1) and y = L on [}, ]], we see that o

¥ =0on [—;, é] and outside (—1, 1). Thus 93

; jlor| .
s =) 30w (M)

,
Ao ) Ay

1 | | 94
y Al

= = <l=
27 ae 2

<yl < G-

By the same method as we used for the estimate of X (x, y), there is Dy > 0 such o5
that 9%

|Z5(x,y)| < DYF'NIy[S1, N=0,1,2,.... (15)
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Combining (14) and (15), we have for some A > 0 o7
aF
‘ LGy < AVPINIyS, N=0,1,2,..., Yji=1,2,....m
3Zj
and hence (2) in Theorem 2.1 holds. Conversely, suppose that for each K CC £2 98
there is F(x,y) € C' (K x R™) such that 99
1. F(x,0) = f(x) and 100
2.
aF
‘ _(xy)| < cN+1N!|y|xﬁl, j=12,....m
3Zj
for some constant ¢ > 0. 101

o

We wish to show that f(x) € G*(§2). It is sufficient to show that f € G°(B) for 102
each sufficiently small ball in £2. Let By, be a ball of radius 2r whose closure is in §2, 103
and let F(x, y) be given as above on a neighborhood of the closure of £2, = By, X B,. 104
We may assume that F(x,y) = 0 for |y| > r. 105

Set 106

w(2) =dzi N ... Adzy.

For n > 1, let 0, denotes the area of the unit sphere §"~! in R”. We will identify C" 107
with R?". Fork = 1,...,m, let 108

@) = ()M N ATy AdT A dTgy A T

where dz; is removed. For each x € B,, from the higher dimensional version of the 109
inhomogeneous Cauchy Integral Formula, we have 110

70 = F0) = "0 [ R S =l =) A )

m k=1

- 2(22:m /9 > ;jk W) (Wi — x)[w — x| "0 () A o(w)

" k=1

= g(x) + h(x) (16)

Clearly, g(x) is real analytic on B,. If we show & € G*(B,), we will be done. For 111
eacho = (ay,...,a,), we have 112

~N—m m a
0%h(x) = —2(22) /9 Z avf; (W) ((wi — xi)|w — x|_2’”) woWw) A o(w)
" " k=1
(17)
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For x # w, 113
! _ _ _
(s =3 P = ()
= (wp — x) 0% (Iw —x|_2'”) - ol 94 (|w —xl_z’")
* (x—e)! ™
= (Wi — xx) 0% (Iw —x|_2'”) — oy 0y (Iw - xl_z’") ) (18)
We have 114

3 (Jw —xl_z’") = Z ag(w —x)P|w — x|72=1BI=lel - and so

B<a

19)
R (w—x72") = D bgw—x)|w— x| 2Pl
B<a—e

where ag and bg are constants. Plugging (19) into (18) results in 115

|32 (v = x0) [w — x| 72") |

< w o [ (jw — x| ") | e [ (fw — )|

< Y lagllw = x| 0y bl fw — x|

p=a B=<a—e;

< Ci(ja] + 1)"|w =] 2l (20)

Using the hypothesis, equation (17) and inequality (20), we have 116
oo < 2 / S| 27 Gy o (i = 0w = 72 o) 4 w00
. o Jg Wy !

T k=1

2" N+1 S .
m |
Ci(la) + 1)"e N./Q » 1l lo(W) A w(w)|

A

m r k=1

IA

207 R )
Ci(Jo| + l)chHN!/ lo(w) A w(w)|
O 2, ; ISWIZm-I—IaI—l

< Mt (o] + 1)"N! / [3w] =1 =D o (i) A w(w)
Qr

< Y (laf + D"NY / Qw1 e o) Ao @D
Qr

17
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for some C, > 0. Choose N such that 118
N 1

2m+ o] —1 < <2m+ || + .

s—1 s—1
Then 119
| S|t =D < (] 4 1)
Since N < s(2m + |«|)), (21) becomes 120
|8h@)| < (G + D HEDF (o] 4+ 1) (s(@m + [a])) P HD / (3wl + D=1 @ () A dwl
2

= C/(Cz + l)x(2m+|a|)+l(|a‘ + )" (s(2m + |d‘))s(2m+|a|)

= A|1a|+1(2m + o) @ FleD - some A > 0

< Al (2 1 [al)1), we used NV < VN1

= A|2a|+1((2m + |a)!)* some Az >0

< Al 5@+ (s a1, we used k) < 2R
=AY (lalty, some 43 >0

< A|3a|+12“|”|(a!)“, since |a|! < 2lel gy

< AL“'J'_I(Q!)S for some A4 > 0.

Therefore, h(x) € G*(B,) and so the proof is complete. 121

For I' C R™ a cone and § > 0, we set 122
I'={verl: |v]<§}).

Definition 3 If V.C R™ is open, we say a function f(x, y) defined on V 4 iI"% is of 123
tempered growth if 124

If(x, )| < Cly|™

for some constant C and positive integer k. 125
The following theorem is a microlocal version of Theorem 2.1. 126

Theorem 2 Let u € 2'(2). Then for any xo € 2 and £° € R™ \ {0}, (x0,£%) ¢ 127
WFs(u)(s > 1) if and only if there is a neighborhood V of xo, acute open cones 128
I,..., T, C R™\ {0} and C! functions f; on V + i[}g (for some § > 0) of tempered 129
growth such that 130
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1. u= Z};l bf; near xo, 131
2. 0. I; <0,V), 132
3.
; - -
_(X,y) SAeXp 1 ’VJ 1929 ,n,Vk—l,Z, ,m
0 N
for some A, € > 0. 133
Equivalently, gg (x, y)‘ < CN+1NN|y|sﬁl ,N=0,1,2,...,. 134
Proof Suppose u = bf on V where f is C! and of tempered growth on V +iI"%, £+ 135
I' <0and 136
‘ " (xy) <Aexp< - )j:l,Z,...,m (22)
93 e

for some A > 0, V a neighborhood of xy and I" some conic set. We want to show 137
that (xo. £%) ¢ WFy(u),s > 1. By Corollary 1.4.11 in [13], for each n > 1, we can 138

choose smooth functions f;,(x) that satisfy 139
1. f,(x) = 1 on B,(0), supp(f,) C B»,(0), for some r > 0 and 140
2. |D%,| < C(n + 1) for || < n + 1, for some C > 0 independent of n. 141
Define 142
Fyx+iy) = Z REACTGI (23)
\a\<n
Then 143
JF, 190 i 0 1
y — . o 30{ . . o
' 0z G zy)‘ 2o, > Hh@E )+ iy | 2o o @)
; |a|<n lee|<n
— Vs Vet =L ST Yaenwae
2 al 2 al "
| <n lo|<n,a;>1

1

1 ote .
=1, 2 W)

la|=n

1
< (C+ 1)n+1(n+ 1)n+l|y|n Z o
lal=n
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mn n n n
L (CH D Dy

!
since m"=(1+...+1)" = Z n'
a!

loe|=n

IA

1
'Cq‘H(n + )™ y|", € > 0 (for some C, independent of ).

n!
(24)

Fix y* € I'. Since y° - £° < 0, there is a conic neighborhood I of £° and a constant 144
¢ > 0 such that 145

WeE<—clgl, VEET. (25)
For0 < A < 1, let 146
D, = {x+in’ :x€By(0), A <r<1}.

We have 147

ol (1 4 1)l "
D D _ 3 S “)

lo|<n ' k=0 |o|=k
_ Z (mC(n+ DIyD*
!
= k!
<"1 (we choose § and hence y small enough).

148
This estimate on F;, will be used below. Consider the m-form 149

F(x,y,8) = e “TYEF, (x + iy)f (x + iy)dz

for (x,y) € D;,€ € Iy, where dz = dz; A ... A dz,. Since e~ g holomorphic in 150
z, we have by Stokes theorem 151

/ F(x, Ay°, €)dx
BZr(O)

</ |F(xy E)‘dx
B2 (0)

>f],
],

_L(X+l_)) EF ()C + ly) f (_x + ly)dZ] Adz

eTITIEf (- ly) (x + iy)dzj A dz
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=Io(§) + 11 + 1(©) (26)
Consider /y(§) : For £ € I, 152
Io(§) = / F(xy. )] dr

B2+ (0)
- / e, (x4 )+ )| e

BZV(O)
< CCret! / ¢"fdx, C'= sup |f(x+iy")]

B2, (0) B2y(0)

< C//en-l-le—c\f\ i by (25)

< v n+1N'|ég-|— VéEel, N=0,12,. ... 27

Consider Ill () : Putting y = 1y°, and using (22) and (25) we have 153

1?($)=g//m
< At "fexp(| i 1)2// |dz; A dz

<A” n+l —ct|] exp( 16 )

of

eTiHInYER (o 4 gy ) (x + ity’)dz; A dz

Is—1
N B 3N ! (G
< Al (N) Sadl [(s I)N} P GULE K
G (ctl§]) s § ¢
<COYHINYETY N =0,1.2..... VEE T, 28)

where we used the inequality e~ < dde_d;, (see 1.2.16 in [13]) with d = ]2] for 154

el and d = (*7") N forexp (— < ) . 155
: ts—1
Finally, consider I% (&) : Since f is of tempered growth, there are a constant ¢’ > 0 156
and an integer k > 1 such that 157
C/
If(x + in®)| < , Vx| <2 A<r<1. (29)
th[y0|k

Using (24), (25) and (29) we have 158
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@@=§/L

C 1

. . aFn
eI Ep (1 i) g, @+ in")dz A dz
5

< tk|y0|k n'e—ctlﬂcql-i-l(n + 1)n+l|ty0|n—l
1

1
tke—ct\E\ 'C’;+l(n+ 1)n+ll,n—1
n! -

1

1
< tk+le—ct\5\n'cg+l(n + 1)n+1tn (30)

Given N, choose n such that 159
N N
+k+1=<n< + + k4 1.
S s
Since t < 1, (30) becomes 160

1 . . (n+ 1)n+1
LE) = oottt oo

N+s
- kile_ms‘css TR g 1yl Nk
Tt
N N—+s
NY\s _w 1 Vbt (N + s s TR
= e von, nG +k+2 1s
s AL s

N
(we used ¢ < d% ™ with d = )
S

N N+s
N\s 1 Nets N s Tht2
5( ) c,” +k+2( +s+k+2)

AN s
< BYHINNETY, some B> 0, N=0,1,2,....£ € I, 31)
where B is independent of n. Using (25), (26), (27), (28) and (31), there is a constant 161
B; > 0independent of A such that 162
| = [ e
BZr(O)

= lim
A—0

/ e—i(x-‘,—i/ly()).an(x + tkyo)f(x + llyo)dx
BZ/‘(O)
<BYVINIETY, N=0,1.2,... £ € T,

Therefore, (xo, £°) ¢ WF,(u). 163
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Conversely, suppose (xo, £°) ¢ WF,(u). Then there is ¢ € G°* N C°, ¢ = 1 near 164
Xo such that 165

Gu(E)| = CHINIEITE, N =012,

for £ in some conic neighborhood I of £° and for some constant C > 0. Let Cj, 166
1 <j < nbe acute, open cones such that 167

=JG. 1gnal=0, j#k
j=1

Assume that £° € C; and £° ¢ C; forj > 2. Then we can get acute, Open cones 168

I;,2 < j <nandaconstant c > 0 such that 169
§-1;<0 and y-§>chllEl, Vyel; VEEC (32)
By the inversion formula we have 170

X)u(x) = ! *Epu = ! Y Epu
pu) = 0 [ s oy 2 | e

Forx + iy € R™ + il},j > 2 define 171

f/"(x + ly) g /C L(x-l—l}) §¢u(g) (2 g)m

using (32), we see that f;(j > 2) is holomorphic on the wedge R™ 4 il and is of 172
tempered growth. Let 173

aw = [ &G = en) + g0

where 174
= [ e e = [ et
gy JE|<1 2m)m teC Jt>1 2m)m
Assume C; C I'. Clearly g;;(x) is real analytic on R™. We have 175
18 g1200)] = ‘ [ e
geCy lél>1 @)™

N
< OV / €1 d
£€Cy lg|=1
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alier—N
< cN+1NN/ £ g
g€y |§|=1
m+1+ s+1 m al)s o —m—1—|a
< U 1] [ gl
g€y E=1

(taking N «~ (m + 1 + |«])s)

< A (@1)*, for some A > 0.

Therefore, g; € G°. By theorem 1, if K is a compact set whose interior contains xg,
there is fi (x + iy) € C'(K + iR™) such that f; (x) = g;(x),x € K and

<clexp<_cz) Vi=1,2 m
= | ]

(x.y)
yls=

e

9z

for some constants ¢y, c; > 0. Let '] be any open cone such that £0.N < 0.LetV C
K be an open such that xo € V. Then we have found functions fj(x + iy)(1 <j < n)
C'lonV+ il}g (for some § > 0) and of tempered growth such that ¢pu = Z;’Zl bf;
on V. By contracting V we have ¢ = 1 on V andso u = Z;'l=1 bf; on V. Thus, the
proof is complete.

3 Characterization of the Gevrey Wave Front Set
For u € &' (R™) we recall that the classical FBI transform of u is

Fu(x, &) =/ eis'(x_x/)_lgl‘x_x/lzu(x’)dx/.

m

We recall the following theorem of M. Christ which characterizes the Gevrey wave
front set of a function in terms of the classical FBI transform.

Theorem 3 ([7]). Let u € &'(R™). Let xo € R™, £ € R™ \ {0}. Then (xo, &%) ¢
WE(u) if and only if there is a neighborhood V of xy, a conic neighborhood I" of
£0 such that for some ¢ € CP(R™), ¢ = 1 near xo,

|7 (). 8)| < crexp (—calél? ) V(e E) e Vx T

for some constants c1,cy > 0.

Our goal is to generalize Christ’s theorem to a subclass of the generalized FBI
transforms introduced in [6]. We will consider a polynomial which is a sum of
elliptic, homogeneous polynomials.
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Let p(x) be a positive polynomial of the form

PO =" aw+ Y bpx aubp e RIF£K

lee]=21 |B|=2k

which satisfies

c |x|21 < Z agx® < C2|x|21

Ja|=21

and

sl < Y g < eqfx*
|B1=2k

for some constants 0 < ¢; < ¢y and 0 < ¢3 < ¢4.
Suppose I < k and let

P = Y aox.pa(x) = ) bl

lee]=21 |B|=2k

Take ¥ (x) = e ?W as a generating function and A = Zlk as a parameter. Let ¢, > 0
be a constant such that

cp /]R’" Y (x)dx = 1.

In this section we will consider the FBI transform given by
Futtd) = ¢ [ (e =i ra
Rm
—¢, / == 1= ~lelpa=) (.

Let x(x) € S(R™) such that [, x(x)dx = 1. Set

1)
o = .
©= 5
Then the inversion formula becomes
u(x) = lim D (e€) Fult, €)|E| > didE.

e—>0+ RmxRmM
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We will show that this class of FBI transforms characterizes the Gevrey wave front 204
set of a distribution. We remark that the proof will also work for p(x) that is a sum 205
of a finite number of elliptic, homogeneous polynomials. 206

Theorem4 Let u € &'(R"), xo € R™, £ e R™ with |€° = 1. Then 207
(x0, E%) ¢ WF,(u), s > 1 if and only if there exist a neighborhood V of Xy , a conic 208
neighborhood I' of £° and constants a, b > 0 such that for some ¢ € CPR™), ¢ = 209
1 near xy, 210

\Z(pu)(1,6)| < ae™™ 1, (1.8) e Vx T

Proof Suppose (xo, £°) ¢ WF,(u). We may assume that xo = 0. By Theorem 2.3, 211
without loss of generality, there is f which is C! in some truncated wedge V.4 il5 212
(for some 6 > 0) and of tempered growth with V a neighborhood of 0 and I" an 213

open cone such that 214
l.u=bfonV, 215
2. EO -I' <0, and 216
3.

—B
§Aexp< 1),x+iy€V+i1"5

9
{ (x +iy)
% [yl

;

for some A, B > 0. 217

Let r > 0 such that 218

By, ={x:|x| <2r} CC V.

Let ¢ (x) € Cg°(R™), ¢.=-1 on B, and supp(¢) C Bo,. 219
Fix v € T5y. 220
Let 221

O £.%) = iE - (v — ) — [¢l ip1 (@ = 2) — [Elpa’ — ).
Then 222
FG0W.H = ¢, [ putd
= (bf’ ¢(x)eQ<x’,s,x)>

=c¢p lim eQ(X/'S'X)q&(x)f(x + itv)dx.
t—0+ B,
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Since ¢(x) € C®(R™), it has an almost holomorphic extension ¢ (x + iy) smooth
on V + iR™ with x— support in B,,. Then

F(pu)(¥, &) = ¢, lir&_/ QU XTI G (4 4 irp)f(x + itv)d.
= By

For0 < A < 1, let
D)y ={x+itveC":xeBy, A<t=<1}.
Consider the m-form
w(z) = Y EIG(f () A ... Adzm.z = X + iy.

Letdz = dzy A ... A dzy. Since ¢(x + iy) = O for |x| > 2r and since €2@' £ is
holomorphic in z, by Stokes theorem

F(pu)(x. &) = ¢, klir&_/ QW SR E (v LA (x 4 idv)dx
- BZr

= cp/ eQ(x/'S'x+iv)¢~>(x + )f(x + iv)dx
Bay
+¢, lim Xm: / / QW EXTIM G (o Ly o (x + itv)dz; A dz
p A—=>0+ =1 Dy aZ_] ]

: - X x+ity 3(]; . . =
+¢ Ali)r(r)l+ ; / /DA QW Extit )az_j (x 4+ itv)f(x + itv)dz; A dz
. A A
= IO(X/, £) + /11_13(1)14,- (11 (x’, £)+ 15 ()C/7 %-))

Since v € I" and £° - I" < 0, there is a conic neighborhood I of £° and a constant
¢ > 0 such that

§-v = —clgllv], VEeI.

Consider Iy(x', §) :

(X', &) < sup |c,,<;§(x + )f(x + iv)| MW Extiv) gy

XEByy By
For & € I, |&| = 1, sincel < k,
RO, €, x + iv)

=9 (6 (& —x—iv) — [l ip (Y = x = i) = [Elpa — x = iv))
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= &0 — [E]i N1 (& —x — iv) — |E[pa( —x — iv)

=£-v—[Elip1( —x) + O E]E — [Elpa(x —x) + O(Iv]P)&

< —clvl|g] = c1[E] X — 2
+O(vP)lgl+ — cslglly — x* + o(lv)g]
< —clvllg] + O(v )]

choosing |v| small such that O(|v|?) < Clzvl = (/. Then

RO, E,x+iv) < =g, E eI, |E| > 1, e R™.

Thus, for & € I, |§] > 1,
/ / L
oo £)] < c"e<¥l < el

for some ¢” > 0. Since

Ih(x'.§)

e—clels
is bounded on By, x {£ : || < 1}, there are Ay, By > 0 such that
1
(X, E)| <Age Bl ve e Iy, X < 2r.

Consider

Q e 9
.8 =c, Z / / QW EXFIN g (v 4 jtv) a;- (x + itv)dz; Adz:
j=1 D, )

For§ € I, 161 = 1,

’ : e a
prelty ,S,x+ztv)¢(x + itv) a]j (x + itv)
g

’ ; —B -
< CIESRQ(X ,E,x+ttv)A exp 1 , C/ — sup |¢(x + itv)|
|tv]s=1 (x.1)€B2,X[0.1]

/
< AlemetvllE—ald =Pl +oUnP el oy (—If )
1s—1

/
—C —_ /__ |2k 7.2 2
< Al emetollEl—er W —PHEl+4" 2P exp( : ) some A’ > 0

Is—1

(33)
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7 2 _B/
< Alg—etlliEl+a" Pl exp( ! )
1s—1

/
< Ale™cMEl exp( 1 ) (take |v| small such that A”|v|?> < Clzvl =)

1s—1
< CVPINNELS some C> 0N =0,1,2,. ..,
where we used the inequality

e <de a7 da>0

withd = 1;’ for el and d = (JZI)N for exp ( _f/ ) forN > 1.

ts—1
Hence

1' I)» /
Ag(r)1+| (9]

" e of
=c, lim QW EXHI) g (v 4iny X + itv)dz; A dz
U ;/[D Bl Hi) ! oo iy

m 1
< lim CVTINMg| S / / dz A dz
< lim_ €] ; RIS
<D"PINNE| S £ e X, gl =1,X € R™, some D > 0.

Therefore,
lim |I*(¥.&)] <a) exp (—b1|g|i) YEe I, |E| > 1,% €By
A—>0+

for some ay, b; > 0independent of A. But

1+, ©)|
exp(—bi[£]+)

is uniformly bounded on By, x {£ : |&| < 1}. Thus, there are A, B; > 0 such that
dim |14 6)] < Avexp (<Bilgl} ) VE € I | < 2. (34)
-0+

Consider

“ b iy 0P
I% ., E) = E / /D QW Extitv) 8(5 (x 4+ itv)f(x + itv)dz; A dz
j=1 A 2]

239

240

241

242

243

245



Author's Proof

Characterization of Gevrey Regularity by a Class of FBI Transforms

Forserlvlﬂzly 246
/ ; 21,12 ’ 2%
RO, £, x + itv) < —ct|v||E] + OF|v|*)|€] — c3]E||x — x|
< O(Jv]*)|€| — c3]€|1x’ — x|** sincer <1

2 2%
< d'|v*|§] — esl§ 1Y — x|

Since gf = 0 for |x| < r, the integral over |x| < ris zero. Then for |x'| < ] and 247
j
x| = r, 248
2k
RO, &, x + itv) < d'|v)*|E| — ¢ 2k .
Choose |v| small such that 249
2 2%

/ U

a'lv| §c122k+1:c.
We then get 250

RO, &, x + i) < =C"|&|, € eI, |€] > 1.

Since f is of tempered growth, there is a constant d > 0 and an integer n > 0 251
such that 252

x4+ i) < .
fatmls, .,

Since ¢~> is almost holomorphic, there is ¢, > 0 such that 253

%
¢(x+ i) <cpt'v|" Vj=1,2,....m.
8Zj

Thus we can get A, B, > 0 independent of A such that 254
1
; Ay < —BafEls vy / r
/11_1)%1+|12(x7$)|—A2€ ) SEFlv |X|<2 (35)
Therefore, from (3.1), (3.2), and (3.3), we can find constants A, B > 0 such that 255
1
| Z(@u) . )] < Ae™F1", V(. §) € By x Iy

where I is a conic neighborhood of £°. 256
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\Z($u)(t, E)] < cre=" (1,6) e VX T

where V is some neighborhood of 0, I a conic neighborhood of £°, and ¢y, c; > 0
are some constants and ¢ € C5°(R™), ¢ = 1 near 0.

We want to show that (0,£%) ¢ WF,(u). Let 6(§) = e We apply the

inversion formula

¢@)u(x) = lim

e—>0+

Let

TR F ($u) (1. §) €| 5 drdg.
RmxR™

ue(2) = / =P Z () (1, ) £ R didt, 2 % x iy € C”.
RIVIXRIVI

Clearly uc(z) is an entire function of z for each € > 0.

We write

where for some a > 0 we set

ug(z) = /m
ui(Z) S /m

and

ue(z) = ug(z) + ui(z)

/ FECD o (e£) Fu(t, §)|€| H dr di
|t|<a

/ D (e8) Fu(t, £)|€| S d .
[t|=a

Consider ug(z) : Choose a > O such that {¢: [t| <a} C V.Let %, = I,6;,1 <
Jj < n be open acute cones (we may take I" to be acute ) such that R” = U7=0 G,

%N €, has measure zero when j # k and §° & ¢; forj > 1.
Since £° ¢ %; and € is acute we can get acute, open cones INl1<j<nanda

constant ¢ > 0 such that
€. <0

We have

uy(x) = ;/%/rsa

andy- £ > c|y||E|.Vy € IV, VE € 6.

&=l Z (b (1, £)|E] % drd = Z v; ().

J=0
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Forj=0,1,...,n,andz = x + iy € R" 4 i/, define 273
et = / / AT Fu(r, £) 6|5 duds
G Jtl<a

I (z) are entire for j > 1 and converge uniformly on compact subsets of the wedge 274
R™ + i/ to the function 275

s = [ [ e s g plel

which is holomorphic and of tempered growth on R + iFSj for some 0. < 6 < 1. 276
Thus each f;,j = 1, ..., n has a boundary value bf; € 2'(R™). 277
Let 278

80 = /r/< 50D Z () (1, £) (| 5 drds.

By the estimate for .7 (¢pu)(t, £) on the set {r : |¢|. < a} x I", g (x) are smooth for all 279
€ > 0 and converge uniformly on R to the function 280

aww=[ [ i ol fae

Clearly go(x) is smooth on R™. 281
For any «, 282

109go(x)| =

/ / £ 2y, s)|s|5"kdrds‘
' Jli<a

1 m
<d, / |&|leleme2 61 g2k dE, dy > 0
r

1
<d, / dE + d / ]kl g
[El<1 (er|E|=1
CZ —ms . 1 C2 1\ ms
=d,+d / lo g—e2lél s s) de.dy >0
) 1(2) o (2|s| ) ds.dz

Ccp\ M _ 1 /co NN
<dy+d / ol g—e2lél s :) 4
s+ (5) _ () a

(N =min{N € N: N > ms})

<dy+d, (CZ)_WN/!/ g1l emerll? Tl g
2 gerlel=1

283
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—c 1
<d +d3/ H b E1* g& (some d3 > 0)
(€T E=1

2\V -
Sd2+d3( ) N!/ lellel|e] 5 de, YN = 1,2,
€2 (€l E|=1

<d +dNNN/

BEUH 7&Ndég', (since N! < NV)
ser|g|=1
<dy 4 d" TV o] 4 1yt lal D
(taking N such that (m + |a|)s <N < (m + |a| + 1)s)

< dy + (edy) " T1NFVS((m 4 || + 1)1 since n" < e n!

< dy + (2edy) " T[4+ 1 (|| ) (we used (j + k)! < 2KFik1jt

< FlY+ 1) since |o|! < 21!

for some F > 0 independent of «. Hence go € G*(R™). Thus there is fo(x,y) €

C'(V x R™) such that fy(x, 0) = go(x) and

—A
[y

o
9 (x,y)

Choose Iy an open cone such that £ - I, < 0. Thus we have found open cones
I, I, ..., T, and functions f; holomorphic on R™ + i1'}8 (for some § > 0) for
j = 1 which are of tempered growth and fy (x, y) smooth and of tempered growth on

R™ 4 il 08 (for some § > 0) such that

£9.17<0,0<j<n

and
of; —A
’ Ji’(x,y) <A 2).vi=1.2....0.Vk=0.1,2,...m.
02k N
It is readily seen that in the sense of distributions, forallj = 1,...,n,
s+ = i 169
and
li iy) = li o (x).
rlim Jolx + i) = lim, g5(x)
Hence

uo(x) = ) bf;
j=0

in 2'(R™). By Theorem 2.3, we conclude that (0, £%) ¢ WF(uo).
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Consider u{(z) : We will show that (u{(z)) is uniformly bounded for z near 0.
Write

3
U@ = ) I ()
j=1

where for some A > 0 to be chosen later

I{(z) = theintegral over X; = {(1,§) :a < |t]| < A,|&] < 1}
I5(z) = theintegralover X, = {(1.§) : [t| = A,§ e R"}
I5(z) = theintegralover X3 = {(1.§) :a < |tf| <A, |§| = 1}

Since X, is a bounded set and .7 (¢u) is continuous function it-is clear that there is
a constant C; > 0 independent of 0 < € < 1 such that

I(2)] < /X R | Z (pu (1, )| |E|F didE < CLLV ]| < 1. (36)

Consider I5(z) : Let r > 0 such that

supp(¢) C {x: |a| <7} = B,.

Choose A = 2r. Then for x| < rand || > A,

—4 "4
and so
ok 1A%
[t — x| > A2 +42k.
We have
F@ueol = [ el = )t

2 s ! s s
/| | £ =X )—IE1k pr(t—x") =€ ]p2 (1—~ )d)(x’)u(x’)dx/
x| <r

<C sup

W |=rlal<N

8, (e,-s~(f_x/)—|s| im(r—/)—wz(r—x/)) ‘ . Ny = the order of 1
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To estimate the preceding expression, we observe that if ¢ is a constant and A(x) is 305
a smooth function, for any multi-index 8, the derivative af? €A™ is a sum of terms 306

of the form ¢t =+ ("1 p) .. (@™ p)" where 3", m;l; = |B|. This observation 307
together with the fact that e™¢ < ’C‘,: for any ¢ > 0 leads to 308

|\ (pu)(1,£)| < Cle MNP =BIEl | > 4 £ c R™

for some constants C’, A1, B; > 0 independent of € > 0. Therefore, 309

115()| =

/ / eis~(z—t)—eEzy(¢u)(;,g)|g|§7cdtd§‘
mJ |t =A

c’// DIl = EIP* =Bl |5 gy
It =A

_ C// eDIIEl=Bulél g5 (/ e—AllEHrlzkdt) di
m [f]>A

_ c”/ SIlEL Bl

B B
SC/// e f”f\d%‘, Vz=x+iy, |y| < 21'

IA

It follows that there is C; > 0 independent of 0 < € < 1 such that 310

b—1
@I <GVl <6 =" YO0<e<l,

Consider I5(z) : 311

. ’ Lo —x')— —x m
I;(Z) _ ///elg.(z_x )—|E|kp1( )—I&lpa )_E|E|2¢(x/)u(x/)|§|degdxldl‘
R

where 312
R={¢X.0:[§| =1, [X|<ra<|]<A}

Using a branch of the logarithm we note that the function £ + |£| has a holomorphic 3
extension 314

3

O=1>c
j=1

In particular, the functions ¢ + () and ¢ — (¢) % are holomorphic on the set 315

S={=E+ineC":|n| <I|&l}.
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Fix x,x’. Then we will change the contour of integration in & from the m-cycle 316

{€ 1 |€] = 1} C R™ to its image under the map 317
¢(E) = & + iblE|(x— x)
where b > 0 is chosen small so that 318
INEE)] = blE[lx —x'| < [REE)] = [E]
Let 319

D = {& +ioblg|(x—¥) |5 2 1,0 <0 < 1}.
Consider the m-form 320
w(z, ¥, 1, €) = ) im(t—x@—(é)pz(t—x’)—e(é)z¢(x/)u(x/)(g) % d¢
where { = &+ ine C", dl =diy A ... AdCy. Since 321
2 / ! A / m
g(£) = IO Ep =) =(Opali—x )_€(§)2¢>(x’)u(x’)(§) %

is a holomorphic function of £, w is a closed form. So by Stokes theorem 322

/aDwdé'szda)/\dé':O.

Now 323

D = (£ |8l =13 {E + iblE| (= x) ¢ [E] > 1}

(e +ioblg|(x—x) : [E] =1.0< 0 < 1}.

Therefore, 325

. ’ I pyt—)— 1—x m
[ e g o e
>
= / w(z, X', € + ib|E|(x — X))dE
E[=1

1
—/ / w(z, X', & +iob(x —x'))dédo
o Jig=1

Clearly there is B; > 0 independent of € such that 326

/1/ w(z, X', & + iob(x —x'))dédo| < By.
0 Jigl=1
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To estimate the other integrals, let

0@ 1.6.€) = iz — ) - L(E) — (L) ipr(t—x) — (L E)palt —X) — (L (©))?

where

Then

(&) =& +iblg|(x—X), z=x+iy.

RO(z, ¥, 1, €, €)
— —blE|lx — X P =y £ = REE) kpi(t — x) — R(EE))palt =)
— eR(L()

We note that

(€®)? Z(éj +ib|E| (g —x))* = [EPP — DJEP [x— x| + i2bIE|E - (x— ).

j=1

Let |x] < 1. Then since |x'| < r,

PlEP e —x'? < b*BIEP

for some B > 0. Then we can choose » > 0 small enough such that

and

Hence

2
W = 16— I~ P =

arg( @) e ]

RE(E)) (ZCZ(E)) = C(%‘)))

= mezk 103( () )

= (€| cos st ©)?) > 0
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and
) = (6@ cos  aretz(©)?)
= (@) cos ) arele(©)))
=PB|¢|, B > 0.
Therefore,

NO(z, X', 1,€,€)

= —blg|lx =X —y- & — REE)) ipr( = x) — REE))palt — X)
—eR(E ()

< —blE|lx — X' + [y]€] — B'cslg] |t — x| *

Letz = x+ iy = 0. Then
NO(0,x, 1, &, €) < —blE||¥|* = B'esl&||t — x')*.
If |x'| > ¢, then

2
a
WO, ¥4, §€) = —ble|l¥ < —b°, I8l

If |x| < ¢, then since J¢| > @, [ —x'| > ¢ and so

B/C3a2k

RQO0,X' 1, €, €) < —Bc3|E||t —X|* < — o2k

1.
Thus there is A| > 0 independent of € > 0 such that
RO, %, 1,6, €) < —A[E], VIE| > 1.
By continuity and homogeneity in £, there is §3 > 0 such that for some A, > 0

ROz ¥, 1.€.€) < —A2JE. VIE| = 1, ]z] < 65

Therefore,

‘ /|s| 0l . £(6). s i,

s eHleens
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and so

II5(z)] << A;

for some A3 > 0 independent of € > 0 for all |z| < §3.

Let § = min {1, &, 83} . Then there is 0 < A < oo such that

sup |ui(z)] <A, V|z| <.

0<e<l

Thus there is a subsequence € > 0 such that for some 0 < §" < §,

u?‘(x + iy) = ui(x + iy)

uniformly on |x + iy| < &. In particular, u;(z) is holomorphic on'|z| < §. Hence

(0,

£%) ¢ WF,(u1) and so (0, £°) ¢ WF,(u;). Since WF,(u) C WF(up) U WF(u;)

we get (0, £%) ¢ WF,(u) and the proof is complete.
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