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Background

Fermat’s Last Theorem states that
Xn + yn — Zn

has no solutions in non-zero integers if n > 3.

Pierre de Fermat thought that he proved it when he wrote his
famous 17th century marginal note.



Background

Later in life, using his method of “infinite descent,” Fermat
proved that there are no non-zero solutions to Fermat’s
equation x" + y" = z" with n = 4. Because ruling out non-zero
solutions to Fermat’s equation for a given exponent rules out
solutions for all multiples of the exponent, his proof reduced the
Last Theorem to the case where the exponent is an odd prime
number.



Background

Later in life, using his method of “infinite descent,” Fermat
proved that there are no non-zero solutions to Fermat’s
equation x" + y" = z" with n = 4. Because ruling out non-zero
solutions to Fermat’s equation for a given exponent rules out
solutions for all multiples of the exponent, his proof reduced the
Last Theorem to the case where the exponent is an odd prime
number.

In the 18th century, Euler treated the case n = 3, thereby
reducing to the case of a prime exponent > 5.



The problem remained open until the 1990s.
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Fermat’'s Last Theorem and modern arithmetic

In the 1970s, there was a growing feeling that the 20th century
techniques of arithmetic algebraic geometry (pioneered by
Siegel and Weil) might be fruitful in studying the algebraic curve
xP + yP = ZP_ In fact, Barry Mazur’s 1977 study of the family of
modular curves {Xp(N)} (one for every prime number N) was
regarded by some as a prelude to the study of Fermat curves.

of Gaeta we wrote what we believed to be a complete de-
scription of this question. The paper was quickly written
and accepted for publication in Inventiones. The same year,
Lucien gave a remarkable Bourbaki talk (June '72) on “spe-
cial divisors,” based on the works of Kempf, Kleiman, and
Laksov.

We began to understand that our tastes were diverging.
Lucien was more and more attracted by arithmetic. He
would regularly describe (with a smile) a project to prove
Fermat’s theorem (often by using Frobenius). I had de-
cided to classify space curves. He wanted to be in Paris, I
wanted to leave Paris. This was the end of a collaboration
that both of us had enjoyed deeply, the end of our years
of training. 1 left Paris for many years. As a friendly sign,
Lucien gave a series of lectures on space curves at the Tata
Institute. Later, he would visit me in Strasbourg and Oslo
and [ would participate several times in his Oberwolfach
workshops.

During the eighties, I heard a lot about the working
group which slowly became “le séminaire Szpiro,” and
particularly about the positive influence it had on several
younger mathematicians. In 1985, Lucien had an indirect,
but very friendly, role in bringing me back to Paris. For
a few years, he moved from Orsay to the same lab as me

igure 3. Szpiro with his motorcycle, 1970s.



Jubilation in 1993

Andrew Wiles announced a proof of Fermat’s Last Theorem in
June, 1993, at an Isaac Newton Institute workshop on p-adic
representations, Iwasawa theory, and the Tamagawa numbers
of motives.
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The announcement was a great moment for mathematics.

At Last, Shout of ‘Eurekal’
In Age-0Old Math Mystery

By GINA KOLATA

More than 350 years ago, a
French mathematician wrote a
deceptively simple theorem in the
margins of a book, adding that he
had discovered a marvelus proof
of it but lacked space to nclude it
in the margin. He died without
ever offering nis proot, ana matn-
ematicians have been trying ever
since 10 supply it.

who works at Princeton Universi-
ty. Dr. Wiles announced the result
yesterday at the last of three lec-
tures given over three days at
Cambridge University in Eng-
land.

Within a few minutes of the
conciusion o1 ms nmai iectre,
computer mail messages were
winging around the world as

Now, after of claims.
of success that praved uncrue,

alerted each oth-
er to the startling and almost

say
challenge, perhaps the most fa.
mous of unsolved mathematical
problems, has at last teen sur-
mounted.
The problem is Fermat's

st

theorem, and its apparent con-
queror is Dr. Andrew Wiles, a 40-
year-old English mathematician

"Betimunn Archive
Pierre de Fermat, whose theo-
rem may have been proved.

wholly sult.

Dr. Leonard Adelman of the
University of Southern California
said he received a message about
an hour after Dr. Wiles's an-
nouncement. The frenzy is justi-
fied, he said. “It's the most excit-
ing thing that's happened in —
geez — maybe ever, in mathemat-
ics.”

Impassihie Is Passible

Mathematicians present at the
lecture said they felt “an elation,"”
said Dr. Kenneth Ribet of the Uni-
versity of California at Berkeley,
in a telephone interview from
Cambridge.

The theorem, an overarching
statement about what solutions
are possible for certain simple
equations, was stated in 1637 by
Pierre de Fermat, a 17th- century
French mathematiciar and physi-
cist. Many of the brightest minds
in mathematics have struggled to
find the proof ever since, and
many have concluded that Fer-
mat, contrary to his tantalizing
claim, had probably failed to de-
velop one despite his censiderable

Continued on Page D22, Column 1

New York Times—June 24, 1993



Echoes of the “great moment”

By Jacey Fortin
Nov. 4,2021 Updated 6:50 p.m. ET

If everything had gone according to plan, California would have
approved new guidelines this month for math education in public
schools.

But ever since a draft was opened for public comment in February,
the recommendations have set off a fierce debate over not only
how to teach math, but also how to solve a problem more
intractable than Fermat’s last theorem: closing the racial and
socioeconomic disparities in achievement that persist at every
level of math education.

Gina Kolata’s June, 1993 article is referenced in a current New
York Times article about K—12 mathematics in California.



Andrew Wiles, June 5, 2002



The gap, and then resolution

Soon after the announcement, Nick Katz was puzzled by a
detail as he read Wiles’s manuscript.

The “gap” that he had identified left the proof in doubt for 15
months.



A gap-avoiding proof was presented by Richard Taylor and
Andrew Wiles in the fall of 1994.

The completed proof consisted of a revision of Wiles’s
manuscript, along with new work by Taylor and Wiles.






Outline of the 1994 proof

I'& Some terms in this description will be defined in a few
moments.

l. It's a proof by contradiction. Assume aP + bP = ¢ with a, b
and ¢ non-zero co-prime integers and p a prime > 5. We will
derive a contradiction from this assumption.

[Il. [A technical point: After possibly permuting a, b and ¢ and
changing some signs, we can and do assume that b is even
and ¢ = 1 mod 4.] We then make the Frey elliptic curve:

E:y?=x(x—a")(x+b").

This curve turns out to have the required contradictory
properties, a key point being that the discriminant of the cubic
polynomial x(x — a”)(x + bP) is a perfect pth power.



The proof of Fermat’s Last Theorem

This curve turns out to have the required contradictory
properties, a key point being that the discriminant of the cubic
polynomial x(x — a)(x + bP) is a perfect pth power.

[ll. Using this key property of the discriminant, | proved
(in 1986) that E is not modular, i.e., not associated with
modular forms.

IV. Wiles (plus Taylor—Wiles) proved that E is modular. In fact,
Wiles + Taylor—Wiles proved that all semistable elliptic curves
over Q are modular; the Frey curve E is easily seen to be
semistable. (We learned a few years later that all elliptic curves
over Q are modular.)



The proof of Fermat’s Last Theorem

This curve turns out to have the required contradictory
properties, a key point being that the discriminant of the cubic
polynomial x(x — a)(x + bP) is a perfect pth power.

[ll. Using this key property of the discriminant, | proved
(in 1986) that E is not modular, i.e., not associated with
modular forms.

IV. Wiles (plus Taylor—Wiles) proved that E is modular. In fact,
Wiles + Taylor—Wiles proved that all semistable elliptic curves
over Q are modular; the Frey curve E is easily seen to be
semistable. (We learned a few years later that all elliptic curves
over Q are modular.)

Together, Il + 1V give the required contradiction.
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Now we have to define some terms...
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But first here’s a photo of Gerhard Frey and me from June,
2016.






What is an elliptic curve?

An elliptic curve over a field is a non-singular projective curve of
genus 1 over the field, together with a distinguished point on
the curve over the field.

We will take projective curves with affine equation of the form
y? = a cubic in x,

and use the unique point at infinity in the projective version of
each curve as the distinguished point. In order that a curve be
non-singular, the defining cubic polynomial in x should have
non-zero discriminant.

We already encountered the example y2 = x(x — aP)(x + bP).



The equation y? = x3 — x + 1 defines another:

y=zl-z+1
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This particular curve happens to have 12 integral points:
(=1,£1),(0,+1),(1,£1),(3,£5),(5,£11), (56, +419).



If E is an elliptic curve over Q and /¢ is a prime number, we can
choose an equation for E with integral coefficients and reduce it
mod /. Whenever we succeed in obtaining a non-singular curve
in this fashion (for some choice of defining equation), we say
that E has good reduction mod £.

I's Bad reduction is the opposite of good reduction.

For example, the elliptic curve with defining equation

y? = x3 — x 4+ 1 has good reduction at all primes # 2,23 and
bad reduction at 2 and at 23. (It is relevant that the discriminant
of the cubic polynomial x3 — x + 1 is —23.)



The “semistable” hypothesis

If an elliptic curve has bad reduction at a prime ¢, the reduction
may be additive or multiplicative. An elliptic curve is semistable
if it has either good or multiplicative reduction at each prime.

Equivalently: every elliptic curve has a conductor, which is a
positive integer that is divisible by all primes of bad reduction
but no primes of good reduction. An elliptic curve is semistable
if and only if its conductor is square free.

The elliptic curve defined by y? = x3 — x 4 1 has multiplicative
reduction at 23 and additive reduction at 2. Its conductor is 92.



Modularity

If E is an elliptic curve over Q, and £ is a prime of good
reduction for E, the elliptic curve “E mod ¢’ has a single point at
infinity in the projective plane mod ¢ and at most ¢2 points in
affine 2-space. Thus it has at most /2 + 1 points.



Modularity

If E is an elliptic curve over Q, and £ is a prime of good
reduction for E, the elliptic curve “E mod ¢’ has a single point at
infinity in the projective plane mod ¢ and at most ¢2 points in
affine 2-space. Thus it has at most /2 + 1 points.

It is natural to compare the number of points of E over F, with
the number of points of the projective line over Fy, namely ¢+ 1.
A theorem of Hasse states that the difference

a=L0+1—|E(F)|

has absolute value < 2+/7.

The modularity of E means that the varying numbers a, are
coefficients of a modular form.



The meaning of modularity

The modularity of E means that the varying numbers a, are
coefficients of a modular form (of level equal to the conductor
of E).

For example, the modular form associated with the elliptic curve
y? = x3 — x + 1 is a specific Fourier series

q_3q3_2q5_4q7+6q9+2q11_5q13+6q15+4q17_2q19+"' ’

where g = €2™'™ with 7 in the complex upper half-plane.

That the coefficient of g’ is —4 indicates that the curve has
7+ 1+ 4 =12 points over the field F7 (including the point
at infinity).



12 points over F»

The assertion is that there are 11 solutions to
y2=x3—x+1
over the field of integers mod 7. The 12 integer solutions
(—=1,+1),(0,+1),(1,41),(3,£5), (5, £11), (56, +419)
give 10 points mod 7; note that 56 = 0 and 419 = —1 mod 7.

The 11th point mod 7 is (2,0).



The modularity theorem

In 1994, the articles by Wiles and Taylor—Wiles established the
modularity of all semistable elliptic curves over Q.

During the period 1994—-1999, a group of authors worked
individually and then together to enlarge the set of elliptic
curves over Q that were known to be modular. By the summer
of 1999, they had proved the Modularity Theorem:

All elliptic curves over Q are modular.

This theorem is the principal result of “On the modularity of
elliptic curves over Q: wild 3-adic exercises” by Christophe
Breuil, Brian Conrad, Fred Diamond, and Richard Taylor.



Elliptic curve as group

If E is an elliptic curve, the famous “chord and tangent
construction” turns E into a abelian group, an algebraic group
over Q.

The origin (0 point) of the group is the point at infinity, which is
generally written “O.” Three points on the curve sum to O is an
only if they are colinear.

In this example, the group of points of the curve with rational
coordinates is infinite cyclic, generated by the gold-colored
point (1, 1).






Galois representations

If E is an elliptic curve over Q and n is a positive integer, the set
of points

E[n.={PeEQ)|n-P=0}
is the first homology group of E with coefficients in Z/nZ, the
ring of integers mod n. Of note:
@ We get the same set whether we use Q or C.

@ The set in question is an abelian group of order n? that is in
fact a free module over Z/nZ of rank 2.

@ The Galois group Gal(Q/Q) permutes E[n] in a way that
respects the group law on E[n].

@ The action of Gal(Q/Q) on E[n] is given by a
homomorphism (or “representation”)

Gal(Q/Q) — Aut E[n] ~ GL(2,Z/nZ).



A particular Galois representation

Take E to be the Frey curve
y2 = x(x — &)(x + b°)
and n = p (the exponent in Fermat’s equation). Then
Elp] = {P € E(Q)|p-P= 0}

is an F,-vector space of dimension 2 on which Gal(Q/Q) acts
(continuously). We thus get a Galois representation

p: Gal(Q/Q) — Aut E[p] ~ GL(2, Fp).

Results of Barry Mazur’s 1977 “Eisenstein ideal” article imply
that p is irreducible (i.e., not upper-triangular in any basis).



Barry Mazur




What's wrong with the Galois representation?

If E is modular, then p is automatically modular too: the form f
attached to E satisfies

tr p(Froby) = ¢, (mod p)

for almost all primes /.

Although we should think of the (ultimately non-existent) elliptic
curve E as having a gigantic conductor (the product of the
prime numbers dividing abc), p has a very tiny conductor
because the discriminant of the cubic polynomial

x(x — a°)(x + bP)

is a pth power. In fact, the tiny conductor is 2.

A conjecture of Serre (published in 1987) about irreducible
“odd” two-dimensional representations of Gal(Q/Q) predicted
that p is associated to a form of weight 2 on 'y(2).



A conjecture of Serre (published in 1987) about irreducible
“odd” two-dimensional representations of Gal(Q/Q) predicted
that p is associated to a form of weight 2 on 'y(2).



A conjecture of Serre (published in 1987) about irreducible
“odd” two-dimensional representations of Gal(Q/Q) predicted

that p is associated to a form of weight 2 on I'y(2). There are
none.



Level lowering

In 1986, | proved:

If p arises from a newform of level N—and looks like it
should come from a newform of level 2—then in fact p
does come from a newform of level 2. Since there are
no such newformes, it follows that p is not modular.

= Moving from (high) level N to level 2 is called level
adjustment or level lowering.



In 1986, | proved:

A counterexample to Fermat’s Last Theorem would yield a Frey
curve whose associated mod p Galois representation is not
modular. Thus if the Frey curve were known to be modular, we
would obtain a contradiction.



In 1986, | proved:

A counterexample to Fermat’s Last Theorem would yield a Frey
curve whose associated mod p Galois representation is not
modular. Thus if the Frey curve were known to be modular, we
would obtain a contradiction.

In 1993 and 1994: Wiles + Taylor—Wiles proved that the Frey
curve is modular. In fact, they proved that elliptic curves with
square free conductor are modular; the Frey curve has this

property.



When the proof was new

Gary Comell
P S

Editors
Modular
Forms and
Fermat's
Last
Theorem

At Boston University in 1995, experts discussed aspects of the
FLT proof. Their lectures are available on Youtube.



Wiles’s method

How did we prove that a (semistable) elliptic curve E is modular
in 19947 Here is a quick summary:



Wiles’s method

How did we prove that a (semistable) elliptic curve E is modular
in 19947 Here is a quick summary:

Consider the mod 3 representation attached to E:
ps3 : Gal(Q/Q) — Aut E[3] ~ GL(2, Fs3).

There is no guarantee that ps is irreducible, but we’ll assume
that it is irreducible to fix ideas. (If not, Wiles would appeal to
the “3-5 trick,” which in fact was the last element to the proof
that he presented in 1993.)

Because GL(2, F3) is a solvable group, we can apply a deep
theorem of R. P. Langlands to deduce that p3 is modular. This
theorem is the main result of Base Change for GL(2), a
240-page book that was published in 1980.



Wiles’s method

Wiles’s proof requires an extension of the result of Langlands
that was obtained by Jerrold Tunnell in a 1981 Bulletin of the
AMS article. People refer to the “Langlands—Tunnell theorem.”







Taylor—Wiles

Wiles considered not just p3, but all representations
pan - Gal(Q/Q) — Aut E[3"] ~ GL(2,2/3"2)

for n > 1. A. Weil (and then Wiles) packaged them together as
the 3-adic Galois representation

73 : Gal(Q/Q) — Aut E[3%] ~ GL(2, Z3),

where Z5 denotes the 3-adic completion of the ring of integers.

The key contribution of Wiles and Taylor—Wiles is their relative
modularity or modularity lifting theorem, which provides the
implication

p3 modular = p3 modular.



Napa Valley brut after Wiles’s last lecture






Napa Valley brut before my lecture



Taylor—Wiles

The key contribution of Wiles and Taylor—Wiles is their relative
modularity or modularity lifting theorem, which specializes to

p3 modular = g3 modular

in this context.

The modularity of g3 is equivalent to the modularity of E. (It is
relevant that two integers are equal if they are congruent
mod 3" foralln>1.)






Recap (c. 1994)

Begin with a® + bP = ¢P and form the Frey curve E.

@ By Langlands—Tunnell, the mod 3 representation attached
to E is modular.

@ Modularity lifting implies that E is modular.

@ Since E is modular, the mod p Galois representation p
attached to E is modular.

@ By level-lowering, p is modular of level 2—contradiction!



The proof of relative modularity is organized around the
theorem of deformations of Galois representations that was
founded by Barry Mazur in the mid-1980s.

Wiles and Taylor—Wiles consider lifts (or deformations) of a
mod p Galois representation p to representations

7:Gal(@/Q) — GL(2, R),

where R is a complete Noetherian local ring whose residue
field is the field over which p is defined (so that it makes sense
to say that p is the reduction of 5). In application, p would be 3
and p would be ps3.

The relative modularity theorem may be paraphrased as
follows: if p is modular, and j satisfies some necessary
conditions for modularity, then in fact g is modular.






R=T

Wiles and Taylor—Wiles worked with the “universal” deformation
of p
pr : Gal(@/Q) — GL(2,R)

to a representation with the necessary conditions for
modularity.

The universality means that all plausibly modular deformations
arise (up to isomorphism) from maps R — R. In this picture,
there’s a natural quotient T of R that corresponds to those
deformations that are actually modular.

Wiles and Taylor—Wiles proved that the quotient
R—T

is in fact an isomorphism of rings. In the current lingo, they
established the first R = T theorem.






Beyond 1994: Lots of R = T theorems

A large literature has grown up over the topic of relative
modularity. Mark Kisin, in particular, pioneered the
generalizations.

Frank Calegari reports that he was able to identity over 25
articles in top math journals whose main resultisan R =T
theorem.


https://galoisrepresentations.wordpress.com

Beyond 1994: Lots of R = T theorems

A large literature has grown up over the topic of relative
modularity. Mark Kisin, in particular, pioneered the
generalizations.

Frank Calegari reports that he was able to identity over 25
articles in top math journals whose main resultisan R =T
theorem.

Frank Calegari often discusses current developments in this
direction in his blog Persiflage.


https://galoisrepresentations.wordpress.com

Reciprocity in the Langlands
program since Fermat’s Last

Theorem
Frank Calegari

Frank recently submitted a long survey article to the Journal of
the European Mathematical Society that discusses
developments in this subject since 1993.


https://arxiv.org/pdf/2109.14145.pdf

Beyond 1994: Potential modularity

Around 2000, Richard Taylor introduced the notion of potential
modularity, a catchphrase for the strategy of proving that an
object over a totally real number field F, which one hopes to be
modular over F, is at least modular over some totally real field
F' D F.

Taylor’s ideas are spelled out in a 2002 article with the
innocuous title “Remarks on a conjecture of Fontaine and
Mazur.”



Beyond 1994: Serre’s conjecture is a theorem

Serre’s conjecture was proved in 2005 by Shekhar Khare for
representations that are ramified only at p (“level 1 case”) and
in general by Khare and Jean-Pierre Wintenberger in 2008.

Their proof is a tour de force that includes many clever and
original arguments to harness theorems on relative modularity
and potential modularity to reach their goal.



A skeletal 2020 proof

@ Start with (a, b, ¢).

@ Make E : y? = x(x — a°)(x + bP).

@ Introduce the mod p Galois representation arising from E.
@ Next, forget about E entirely.

@ Apply the theorem of Khare—Wintenberger to the mod p
representation to get a contradiction.



We now know a lot

Michael Harris in Quanta Magazine:

... 10 mathematicians gathered at the Institute for Ad-
vanced Study in Princeton, New Jersey, in a successful
effort to prove a connection between elliptic curves and
modular forms in a new setting. They had all followed
different routes to understanding the structure of Wiles’
proof, which appeared when some of them were still
small children. If asked to reproduce the proof as a se-
quence of logical deductions, they would undoubtedly
have come up with 10 different versions. . ..



Harris’s quotation is from a fairly recent article on the proof of
Fermat’s Last Theorem by Michael Harris.

Why the Proof of Fermat’s Last
Theorem Doesn’t Need to Be Enhanced

More from Harris’s article:

[Proving modularity] was the object of Wiles’ seven-
year quest. It's hard from our present vantage point
to appreciate the audacity of his venture.


https://www.quantamagazine.org/why-the-proof-of-fermats-last-theorem-doesnt-need-to-be-enhanced-20190603/

Kevin Buzzard: “The future of mathematics”

Kevin Buzzard has written:

| believe that no human, alive or dead, knows all the
details of the proof of Fermat’s Last Theorem.

His comment surprised me, but he does have a point.


https://wwwf.imperial.ac.uk/~buzzard/one_off_lectures/msr.pdf

Frank Calegari’s reply
' Mathy Persiflage v
‘ @MathyPersiflage

Replying to @JSEllenberg

Not sure | agree with @XenaProject that nobody knows a
complete proof of Fermat. Everyone knows the Galois
side; the geometric side needs little more than group
schemes, and the automorphic side needs only cyclic
base change for GL(2). Ribet and Tunnell can be avoided.

5:53 PM - Sep 26, 2019 - Twitter Web App

This Xena Project post contains a more in-depth discussion.


https://xenaproject.wordpress.com/2019/09/27/does-anyone-know-a-proof-of-fermats-last-theorem/

Avoiding Ribet and Tunnell

In an email message to me, Khare sketched out a very compact
proof of Fermat’s Last Theorem that uses the techniques of the
Khare—Wintenberger proof of Serre’s conjecture and a theorem
of J.-M. Fontaine: the initial mod p Galois representation from
the Frey curve lifts to a p-adic representation of Gal(Q/Q) that
arises ultimately from an abelian variety over Q with good
reduction outside 2 and semistable reduction at 2. Fontaine’s
work implies that there is no such abelian variety (other than 0).



Conclusion

The techniques of Wiles and Taylor—-Wiles have led to immense
progress in the Langlands program. We know more about the
relationship between Galois representations and automorphic
representations of reductive groups than was imaginable 25
years ago.
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progress in the Langlands program. We know more about the
relationship between Galois representations and automorphic
representations of reductive groups than was imaginable 25
years ago.

When | began preparing this talk, | imagined that the current
proof of Fermat’s Last Theorem would not be radically
dissimilar from the view that we presented in the conference at
Boston University in 1995. Indeed, the main ideas of the 1994
proof (including the Taylor-Wiles method) remain present in
any recounting of Fermat’s Last Theorem.



Conclusion

The techniques of Wiles and Taylor—-Wiles have led to immense
progress in the Langlands program. We know more about the
relationship between Galois representations and automorphic
representations of reductive groups than was imaginable 25
years ago.

When | began preparing this talk, | imagined that the current
proof of Fermat’s Last Theorem would not be radically
dissimilar from the view that we presented in the conference at
Boston University in 1995. Indeed, the main ideas of the 1994
proof (including the Taylor-Wiles method) remain present in
any recounting of Fermat’s Last Theorem.

| realize now that the subject has evolved considerably, and
many new ideas have been introduced in the last
quarter-century.



